MARCH TEST PACKAGE OUT OF 100

QUESTION	TOPICS	MARKS
1	Algebra • Factorise • Quadratic formula • Surd equations • Exponential equations • Inequality • Simultaneous equations	20

QUESTION 1

1.1 Solve for x:

$$1.1.1 \quad (2x-4)(x-1) = 0 \tag{2}$$

1.1.2

$$2x^2 - 3(x+2) = 4$$
 (correct to TWO decimal places)
 (4)

 1.1.3
 $x^2 + 4x - 21 \le 0$
 (3)

$$1.1.4 \quad -\sqrt{x-1} = 3 - 2x \tag{4}$$

1.2 Solve simultaneously for x and y:

2x = 1 - y and $xy - x^2 + y^2 = 5$ (6)

QUESTION 1

1.1

Solve fo	r x:	
1.1.1	5x(2x+7)(8-x)=0	(3)
1.1.2	$x^2 + 13x + 12 = 0$	(3)
1.1.3	$5x^2 - 7x + 8 = 0$	(2)
1.1.4	$\sqrt{x-2}+2=x$	(5)
1.1.5	x(x-1) < 20	(4)
1.1.6	$2^{1-2x} + 7 \cdot 2^{-x} - 4 = 0$	(5)

1.2 The roots of a quadratic equation are $x = \frac{5 \pm \sqrt{22 - 3m}}{2}$. If *m* is an integer, determine the largest value of *m* for which these roots will be rational. (3)

1.3 Evaluate:
$$\frac{\sqrt{9^{2023}}}{\sqrt{9^{2023}} - \sqrt{9^{2025}}}$$
 (3)

1.4 Solve simultaneously for x and y:

$$3+y-2x=0$$
 and $4x^2+y^2-2xy-7=0$ (6)

[34]

2	Number Pattern	28
	Quadratic pattern	1
	Sequence and Series	
	 Arithmetic and Geometric sequences and series 	
	Convergence	
	 Infinite series 	
	 Sigma notation 	

QUADRATIC NUMBER PATTERN

QUESTION 4

4.1	Given	the quadratic number pattern: 94 ; 90 ; 82 ; 70 ;	
	4.1.1	Determine the next two terms of the number pattern.	(2)
	4.1.2	Determine T_n , the general term of the number pattern.	(4)
	4.1.3	Calculate two consecutive terms whose first difference is -136.	(4)
4.2	A quad	fratic number pattern has a general term $T_n = an^2 + bn - 15$.	
	$T_2 - T_1$	= 3 and $T_3 - T_2 = 7$. Determine the values of a and b.	(5) [15]

ARITHMATIC SERIES AND SEQUENCE & SUM TO INFINITY

QUESTION 3

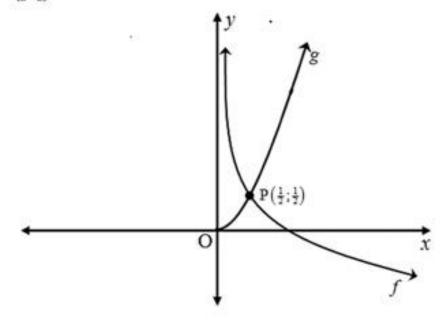
3.1	Consider	the arithmetic sequence: $-\frac{7}{2}$; -3 ; $-\frac{5}{2}$	
	3.1.1	Determine the general term of the sequence.	(2)
	3.1.2	The sum of the first n terms of this sequence is 675. Calculate the value of n .	(4)
	3.1.3	A new sequence is formed by squaring each term of the given arithmetic sequence. Determine which term of the new sequence will have the smallest value.	(3)
3.2	The first 3 terms of an infinite geometric series are given: $(x+1)+2(x+1)^2+4(x+1)^3+$		
	3.2.1	For which values of x will the series converge?	(3)
	3.2.2	If $x = -\frac{3}{4}$, determine the numerical value of the first term.	(1)
	3.2.3	Write the series in sigma notation.	(3)
	3.2.4	Calculate the sum to infinity of the series.	(2)
			[18]

GEOMETRIC SEQUENCE AND SUM TO INFINITY

QUESTION 3

3.1 Consider
$$\sum_{k=0}^{p} (3^{5-k}) = \frac{1093}{3}$$

3.1.1 Write down the first three terms of the series. (1)
3.1.2 Does the series converge? Motivate your answer. (2)
3.1.3 Calculate the value of *p*. (4)


3.1.4 Calculate:
$$\sum_{k=1}^{\infty} (3^{5-k})$$
 (2)

3	Inverse Functions	11
	Parabola	
	 Use a point to find the equation of the graph 	
	 Restricting the domain 	
	 Sketching the graph and its Inverse 	

4	Inverse Functions	13
	Exponential graph	

QUESTION 6

The diagram below shows the graphs of $f(x) = -\log_c x$ and $g(x) = dx^2$; $x \ge 0$. The point $P\left(\frac{1}{2}; \frac{1}{2}\right)$ is the point of intersection of the graphs f and g.

6.1 Calculate the values of c and d.

6.2 Determine:

6.2.1	The equation of	$g^{-1}(x)$ in the form $y = \dots$	(2)

6.2.2 The equation of h⁻¹(x) in the form y = ..., if h is a reflection of f in the x-axis
 (2)

6.2.3 The x-values for which
$$h^{-1}(x) > 0$$
 (1)

(3)

[8]

5	Trigonometry	28
	 Identities 	
	 Double and compound angles 	
	 Reduction formula 	
	 Solving triangle – right-angled 	
	 Solving General equations 	

QUESTION 3

3.1 Given: $\sin \beta = \frac{1}{3}$ where $\beta \in (90^\circ; 270^\circ)$, determine the following by using a sketch and without the use of a calculator:

- 3.1.1 $\tan\beta$ (3)
- $3.1.2 \cos 2\beta$ (2)

3.1.3
$$\cos(-\beta - 450^{\circ})$$
 (2)

3.2 Simplify the following to a single trigonometric ratio: $\frac{4\cos(-x).\cos(90^\circ + x)}{\sin(30^\circ - x).\cos x + \cos(30^\circ - x).\sin x}$ (6)

3.3 If $cos23^\circ = a$, express the following in terms of a:

3.3.1	tan203°	(3)
3.3.2	sin46°	(3)

3.4 Determine the values of the following, without using a calculator:

n105° ((4)
	n105°

 $3.4.2 \quad cos69^{\circ}, cos9^{\circ} + cos81^{\circ}, cos21^{\circ}$ (3)

5.2 Given:
$$\frac{\cos^4 x + \sin^2 x \cdot \cos^2 x}{1 + \sin x}$$

5.2.1 Prove that
$$\frac{\cos^4 x + \sin^2 x \cdot \cos^2 x}{1 + \sin x} = 1 - \sin x$$
 (4)

1.2

5.2.2 For what value(s) of x in the interval
$$x \in [0^\circ; 360^\circ]$$
 is

$$\frac{\cos^4 x + \sin^2 x \cos^2 x}{1 + \sin x}$$
 undefined? (2)

5.2.3 Write down the minimum value of the function defined by

$$y = \frac{\cos^4 x + \sin^2 x \cdot \cos^2 x}{1 + \sin x}$$
(2)

6.3 Determine the general solution of the following equation:

$$6\sin^2 x + 7\cos x - 3 = 0 \tag{6}$$